3,7-DIALKYL-8-ALKYL- OR -ARYL-3,7-DIHYDROPURINE-2,6-DIONES

Alfonz Rybár ${ }^{a}$, Dušan Hesek ${ }^{b}$, Fridrich Szemes ${ }^{b}$, Juraj Alföldi ${ }^{a}$ and Marian Tegza ${ }^{b}$
${ }^{a}$ Institute of Chemistry, Slovak Academy of Sciences, 84238 Bratislava and
${ }^{\text {b }}$ Drug Research Institute, 90001 Modra

Received January 2, 1990
Accepted January 30, 1990

Abstract

3,7-Dialkyl-8-alkyl- or -aryl-3,7-dihydropurine-2,6-diones XII-XIV were synthesized from 5-alkylamino-6-amino-1-alkyl-2,4($1 H, 3 H$)-pyrimidinediones $V I I-I X$ by three methods: the first is based upon an acid catalyzed cyclization of the starting derivatives VII-IX with orthoesters of carboxylic acids in dimethylformamide. In the second and third methods the 5 -((N --acyl)(N-alkyl)amino) derivatives $X, X I$, obtained by acylation of $V I I-I X$ were cyclized either in aqueous solution of alkali metal hydroxides, or in dimethylformamide in the presence of alkali metal carbonates. Intermediates $V I I-I X$ were prepared from 6 -amino-1-alkyl-2,4($1 H, 3 H$)--pyrimidinediones $I-I I I$ via the corresponding 5 -bromo derivatives $I V-V I$ and by their aminolysis with the appropriate alkylamines.

This paper concerns the synthesis of new 3,7-dialkyl-8-alkyl- or -aryl-3,7-dihydro-purine-2,6-diones XII - XIV suitable for preparation of further substituted xanthine derivatives potentially active against cardiovascular disorders. So far, only 8-methyl and 8-benzyl-3.7-dimethyl derivatives ${ }^{1,2}$ have been the representatives of purines having an unsubstituted hydrocarbon residue. The above-mentioned products were obtained by a partial methylation of 8 -substituted 3-methyl-3,7-dihydropurine-2,6--diones into position $7\left(\right.$ refs $\left.^{1,3}\right)$. This method is disadvantageous because of formation of a 1,3,7-trimethyl derivative in addition to the required 3,7-dimethylated one regardless of the excess of the methylating agent.

The presented synthesis affords compounds $X I I-X I V$ without by-products; the starting 6 -amino-1-alkyl-2,4(1H,3H)-pyrimidinediones $I-I I I$ were brominated in position 5 (compounds $I V-V I$), which, on nucleophilic substitution with primary alkylamines gave 5-alkylamino-6-amino-1-alkyl-2,4($1 \mathrm{H}, 3 \mathrm{H}$)-pyrimidinediones VII to $I X$. These were acylated with aliphatic carboxylic acids to yield the corresponding 5-((N-alkyl)(N-acyl)amino) derivatives $X, X I$, and cyclized to the final dioxopurines XII-XIV.

5-Bromo derivatives $I V-V I$, the initial step of this synthesis, were obtained by bromination of the starting substances $I-I I I$ either in acetic acid in the presence of alkali metal acetates, or in lower aliphatic alcohols in the presence of alkali metal
carbonates or hydrocarbonates. Compounds $I-I I I$ were also brominated in water in the presence of alkali metal carbonates or hydrocarbonates at about $5^{\circ} \mathrm{C}$, but the products $I V-V I$ were, in accordance with ref. ${ }^{4}$, partially contaminated by barbituric acid derivatives. As found, these by-products did not originate when alkali metal carbonates were replaced by calcium carbonate at temperatures between 5 and $10^{\circ} \mathrm{C}$; consequently, this procedure proved suited for preparation of $I V-V I$.

I-III

$|V-X|$

XII-XIV

$x v$

For explanation of substituents R^{2} and R^{3}, see Table I (compounds $I V-X I$) and Table II (compounds XII-XIV). For compouds I, IV, VII, X,XII $\mathrm{R}^{1}=\mathrm{CH}_{3} ; I I, V, V I I I, X I I I \mathrm{R}^{1}=\mathrm{C}_{2} \mathrm{H}_{5}$;
 $X, X I \mathrm{X}=\mathrm{N}\left(\mathrm{R}^{2}\right) \mathrm{COR}^{3}$.

5-Alkylamino derivatives $V I I-I X$ were prepared by reacting 5-bromo derivatives $I V-V I$ with alkylamines, or their aqueous solutions in excess at $60-100^{\circ} \mathrm{C}$. The by-product of this reaction is the corresponding tertiary amine $X V$ formed even at a great excess of the alkylamine. Tertiary amines $X V$, where R^{1} and R^{2} are methyl or ethyl groups could be purified by acetylation of the crude reaction mixture giving $5-(\mathrm{N}$-acetyl)amino derivative X, separable by dissolution in water. Separation of tertiary amines $X V$ with greater akyl groups is based on their lower solubility in ethanol; they are lacking a characteristic melting point, nevertheless, they revealed a molecular radical ion in their mass spectra.

Intermediates $X-X I$ (5-(N -acyl)amino derivatives) were obtained from $V I I-I X$ on reflux with carboxylic acids in excess; accordingly, the reflux time depends on the size of R^{2} and R^{3}. Yields and analytical data of intermediates $I V-X I$ are listed in Table I .

The last step of this synthesis was the cyclization of $5-(\mathrm{N}$-acyl)amino derivatives $X-X I$ to the final products $X I I-X I V$. Two methods were employed: a) Reflux in aqueous alkali metal hydroxide or carbonate and acidification of the alkali metal salt of XII $-X I V$ either with acetic acid, or carbon dioxide. Yields of this cyclization depend on the substituent bulkiness: the greater is R^{2} the lesser is the yield. b) Heating in an aprotic solvent as e.g. dimethylformamide at $80-120^{\circ} \mathrm{C}$ in the presence of alkali metal carbonate.

The best yields of dioxopurines $X I I-X I V$ afforded cyclization of 5-alkylamino derivatives VII-IX with orthoesters of carboxylic acids in dimethylformamide under catalysis of p-toluenesulfonic acid at temperatures up to $100^{\circ} \mathrm{C}$. Yields and analytical data of dioxopurines $X I I-X I V$ are listed in Table II.

The ${ }^{1} \mathrm{H}$ NMR chemical shift data of $X I I-X I V$ are listed in Table III; signals of the CH_{3} group at $\mathrm{N}-3$ appearing at $\delta 3 \cdot 50-3 \cdot 65$ were found to be little influenced by the nature of substituents at $\mathrm{N}-7$ and $\mathrm{N}-8$. Similarly, signals due to $\mathrm{N}-7-\mathrm{CH}_{3}$ group occur at $\delta 3.90-3.93$ except those of XIIIb and XIVc, which were seen, as a result of a deshielding effect of the aromatic ring, at $\delta 4 \cdot 10$. Signals of other CH_{3} and CH_{2} groups were assigned according to their multiplicity. Coupling constants for compounds bearing an allyl group at C-7 (XIIp,XIIIc, XIIId, XIVf) J(H,H)--trans $=16.93 \mathrm{~Hz}, J(\mathrm{H}, \mathrm{H})$-cis $=10.26 \mathrm{~Hz}$, whilst that for the $\mathrm{N}-7-\mathrm{CH}_{2}$ was splitted into a doublet $(4.1 \mathrm{~Hz})$. The $\mathrm{N}-1-\mathrm{H}$ signal for all compounds XII -XIV under study is a broad singlet at $\delta 8 \cdot 15-9 \cdot 65$.

EXPERIMENTAL

The melting points are uncorrected, crystallized samples were dried at $100^{\circ} \mathrm{C} / 65 \mathrm{~Pa}$ prior to analyses over phosphorus pentoxide for $8-10 \mathrm{~h}$. Intermediates VIIb, VIIIb, IXa were purified with charcoal via aqueous solutions of hydrochlorides and recovered by basification with ammonia. The ${ }^{1} \mathrm{H}$ NMR spectra of deuterochloroform solutions containing tetramethylsilane as an internal reference were measured with a Bruker AM-300 spectrometer, the electron impact mass spectra were recorded with a Jeol 100 D apparatus at an ionization energy 70 eV . The reaction course and the purity of products were monitored by thin-layer chromatography on Silufol UV_{254} (Kavalier, Czechoslovakia) in solvent systems chloroform-methanol 9:1, or chloroform-ethanol-triethylamine 3:1:0•1 (compounds $I V-I X$).

[^0]Table I
Yields and analytical data of intermediates $I V-X I$

Compound	R^{2}	R^{3}	Yield, \% (method)	$\begin{aligned} & \text { M.p., }{ }^{\circ} \mathbf{C} \\ & \text { solvent } \end{aligned}$	Formula (M.w.)	Calculated/Found			$\begin{aligned} & \mathrm{M}^{+} \\ & \mathrm{m} / \mathrm{z} \end{aligned}$
						\% C	\% H	\% N	
IV	-	-	70 (A)	$\begin{aligned} & 286-288^{a} \\ & \text { water } \end{aligned}$	$\underset{(220 \cdot 0)}{\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{BrN}_{3} \mathrm{O}_{2}}$	$27 \cdot 29$	2.75	$19 \cdot 10^{\text {b }}$	219
			83 (B)			26.99	2.64	$19 \cdot 15$	221
			62 (C)						
V	-	-	56 (A)	248-249	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{BrN}_{3} \mathrm{O}_{2}$	30.79	3.45	$19.75{ }^{\text {c }}$	233
			57 (C)	methanol	(234-1)	30.76	3.36	18.05	235
$V I$	-	-	52 (A)	255-257 ${ }^{\text {d }}$	$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{BrN}_{3} \mathrm{O}_{2}$	33.89	4.06	$16.94{ }^{e}$	247
			34 (C)	methanol	(248.1)	34.10	4.25	17.22	249
VIIa	CH_{3}	-	66	238-240	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$	42.35	5.92	32.93	170
					$(170 \cdot 2)$	42.07	6.03	32.98	
VIIb	$\mathrm{C}_{2} \mathrm{H}_{5}$	-	55	208-210	$\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$	$45 \cdot 64$	6.57	$30 \cdot 42$	184
				ethanol	(184-2)	45.76	6.51	$30 \cdot 28$	
VIIc	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	-	57	230-232	$\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	$48 \cdot 47$	$7 \cdot 12$	28.27	198
				ethanol	(198.2)	48.18	7.29	28.36	
VIId	$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}$	-	80	193-195 ethanol	$\underset{(212 \cdot 3)}{\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}}$	$50 \cdot 93$	7.60	26.40	212
						51.03	7.68	26.63	
VIIe	$\mathrm{CH}_{2} \mathrm{CH}: \mathrm{CH}_{2}$	-	61	$185-186$ ethanol	$\underset{(196 \cdot 2)}{\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}}$	48.97	$6 \cdot 17$	28.56	196
						48.69	$6 \cdot 36$	28.55	
VIIf	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	-	50	$236-237$ ethanol	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	58.52	5.73	22.75	246
					(246.3)	58.33	5.60	23.01	

Compound	R^{2}	R^{3}	Yield, \% (method)	$\text { M.p., }{ }^{\circ} \mathrm{C}$ solvent	Formula (M.w.)	Calculated/Found			$\begin{aligned} & \mathrm{M}^{+} \\ & m / z \end{aligned}$
						\% C	\% H	\% N	
$X h$	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$	60	258-259	$\begin{gathered} \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \\ (282 \cdot 3) \end{gathered}$	$55 \cdot 30$	$7 \cdot 86$	$19 \cdot 84$	282
				water		55.52	$7 \cdot 90$	$19 \cdot 63$	
$X i$	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	44	312-314	$\begin{gathered} \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \\ \hline 20 \cdot 3) \end{gathered}$	49.99	6.71	23.32	240
				water		$49 \cdot 80$	$6 \cdot 58$	$23 \cdot 57$	
$X j$	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	87	300-302	$\begin{gathered} \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \\ (254 \cdot 3) \end{gathered}$	51.95	$7 \cdot 13$	22.03	254
				water		51.96	$7 \cdot 29$	$22 \cdot 19$	
$X k$	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	89	302-303	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \\ (268 \cdot 3) \end{gathered}$	53.71	$7 \cdot 51$	20.88	268
				water		$53 \cdot 87$	$7 \cdot 67$	$21 \cdot 16$	
Xl	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$	65	275-277	$\underset{(296 \cdot 4)}{\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}}$	56.74	$8 \cdot 16$	18.91	296
				ethanol		56.90	$8 \cdot 30$	18.66	
XIa	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	68	288-289	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \\ (268 \cdot 3) \end{gathered}$	53.71	$7 \cdot 51$	20.88	268
				methanol		$53 \cdot 60$	$7 \cdot 80$	$21 \cdot 11$	
XIb	$\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$	62	239-241	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3} \\ (324 \cdot 4) \end{gathered}$	$59 \cdot 23$	$8 \cdot 70$	14.27	324
				ethanol		$59 \cdot 37$	$8 \cdot 68$	14.45	

c. 2 h till the temperature dropped to about $20^{\circ} \mathrm{C}$, the product was filtered off and crystallized from water.
C) To a stirred and to $5-7^{\circ} \mathrm{C}$ cooled mixture of compound $I-I I I$ (50 mmol), calcium carbonate ($3.0 \mathrm{~g}, 30 \mathrm{mmol}$) and water (50 ml), bromine ($8.15 \mathrm{~g}, 2.6 \mathrm{ml}, 51 \mathrm{mmol}$) was introduced to the bottom of the flask during 10 min . The mixture was stirred at this temperature for additional 50 min , the crude product was filtered off and crystallized from water.

5-Alkylamino-6-amino-1-alkyl-2,4($1 \mathrm{H}, 3 \mathrm{H}$)-pyrimidinediones $V I I-I X$
Compound IV-VI (0.2 mol) was heated with concentrated aqueous solution or anhydrous alkylamine (2.0 mol) in a closed vessel as follows: compounds VIIa-VIIc,VIIIa at $65^{\circ} \mathrm{C}$ for 3 h , $V I I e, I X a$ for $4 \mathrm{~h}, V I I I b, I X b, I X c$ for 5 h , and compounds VIId and VIIf at $80^{\circ} \mathrm{C}$ for 7 h . The excess of the amine was distilled off under reduced pressure, the residue was suspended in ethanol (50 ml - compounds VIIa-VIIc, VIIIa, IXa) or water (50 ml - compounds VIId-VIIf, VIIIb, $I X b, I X c)$ and pH of the suspension was adjusted to 7 by addition of acetic acid. The ethanol containing flasks were allowed to stand at $0^{\circ} \mathrm{C}$ for c .5 h , the aqueous suspensions at room temperature for c .1 h ; during this time the alkylammonium bromide being formed dissolved, the desired product was filtered off and crystallized from ethanol (compounds VIIc-VIIf, VIIIa, $V I I I b, I X a-I X c$) or water (compounds VIIa, VIIb).

5-((N-Alkyl)(N-acyl)amino)-6-amino-1-alkyl-2,4(1H,3H)-pyrimidinediones $X-X I$
Compound VII-IX (40 mmol) was either refluxed or heated to $160^{\circ} \mathrm{C}$ with the respective aliphatic acid (0.4 mol) with stirring as follows: compounds $X a-X c, X e, X f$ for $3 \mathrm{~h}, X d, X i, X I a$ for $4 \mathrm{~h}, X g, X j$ for $5 \mathrm{~h}, X k$ for $6 \mathrm{~h}, X h, X l$ for 7 h , and $X b$ for 8 h . Excess of the acid was then distilled off under reduced pressure and the residue was crystallized from water ($X a, X e, X f, X I i$, $X I a$) or ethanol ($X b, X g, X j, X k$), or extracted with ether at elevated temperature and crystallized from water ($X c$), ethanol ($X d, X l$), methanol ($X h$), or aqueous ethanol (XIb).

3,7-Dialkyl-8-alkyl- or -aryl-3,7-dihydropurine-2,6-diones XII-XIV
A) Sodium hydroxide ($1 \mathrm{~mol} \mathrm{l}^{-1}, 20 \mathrm{ml}, 20 \mathrm{mmol}$) was added to a suspension of 5 -acylamino derivatives $X(20 \mathrm{mmol})$ in water $(40 \mathrm{ml})$ the pH of which was adjusted to 7 . The mixture with compound XIIa was refluxed and stirred for 1 h , with XIIb-XIIe 3 h , with XIIk 4 h , and with XIIf 5 h . The undissolved impurities were filtered off and dilute acetic acid ($1: 1$) was added to the cooled filtrate; alternatively, the cooled filtrate was saturated with carbon dioxide. The mixture was left to stand at about $0^{\circ} \mathrm{C}$ for $2-3 \mathrm{~h}$, the precipitated product was filtered off, dried at $100^{\circ} \mathrm{C}$ under diminished pressure and crystallized from ethanol. The not-cyclized starting material X had to be removed from compounds XIIk, XIIl with hot toluene or tetrachloromethane in which only the products are soluble.
B) 5-Acylamino derivative $X-X I(40 \mathrm{mmol})$, anhydrous potassium carbonate $(6.63 \mathrm{~g}$, 48 mmol) and dimethylformamide (100 ml) were heated at $120^{\circ} \mathrm{C}$ for 3 h (XIIa), 5 h (XIIg), 6 h (XIId, XIIt), 7 h (XIIe), 10 h (XIIf, XIVc), 12 h (XIIh, XIVd, XIVe), 14 h (XIIm). Dimethylformamide was distilled off under reduced pressure, the dry residue was dissolved in water (50 to 150 ml), the turbidity was removed by filtration with charcoal and the filtrate was saturated with carbon dioxide. The mixture was allowed to stand at $0^{\circ} \mathrm{C}$ for $2-3 \mathrm{~h}$, the precipitate was filtered off, dried at $100^{\circ} \mathrm{C}$ under diminished pressure and crystallized from ethanol.
C) 5-Alkylamino derivative $V I I-I X(10 \mathrm{mmol})$, dimethylformamide (15 ml), triethyl- or trimethylorthoester of carboxylic acid (15 mmol) and p-toluenesulfonic acid monohydrate
Table II
Yields and analytical data of 3，7－disubstituted 8 －alkyl－，or－aryl－3，7－dihydropurine－2，6－diones XII－XIV

${ }^{+} \times{ }^{\text {N }}$	\＃	－	N	\％	$\stackrel{\sim}{\sim}$	N	¢	＋	숯	ה
－ $\begin{gathered}\text { z } \\ \text {－}\end{gathered}$	～	－	べへ	へัへ入入		べへへへへべへ	ご	$\stackrel{\text { ® }}{\text {－}}$	ก ¢	べ
宸	$\stackrel{9}{\dot{n}}$	$\cdots \stackrel{m}{n}$	べ¢	$\stackrel{\sim}{\sim}$	F	¢			$\underset{\sim}{\text { Ni }}$	¢
－へ－		安㐫	$\begin{gathered} \underset{\sim}{U} \\ \dot{W} \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{i} \\ & \stackrel{0}{i} \\ & i n \end{aligned}$	守守安	$\begin{aligned} & \text { U } \\ & \underset{\sim}{*} \\ & \underset{\sim}{w} \end{aligned}$	$\begin{aligned} & \bar{\circ} 8 \\ & i \hat{i} \end{aligned}$	$\begin{aligned} & \hat{\circ} \\ & \dot{i} \text { in } \end{aligned}$		$\underset{~}{\text { U }}$
皆会边										
¢	$\begin{aligned} & \stackrel{\rightharpoonup}{=} \\ & 1 \\ & 1 \\ & \text { dep } \end{aligned}$	$\begin{gathered} \text { No } \\ \text { N } \\ \text { No } \end{gathered}$	N N 1 N	त 1 －	－	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$		N N N	$\stackrel{\rightharpoonup}{1}$ $\stackrel{\infty}{1}$ \cdots
	Nis	$\underset{\sim}{\underset{\sim}{x}}$	$\stackrel{\mathbb{E}}{n}$	（ ¢			（1）${ }^{\text {a }}$	－	$\underset{\sim}{0}$	$\underset{\sim}{6}$
${ }_{\sim}^{\infty}$	ジ	$\stackrel{i^{n}}{v}$	İ	$\begin{aligned} & = \\ & \underset{y}{m} \\ & \dot{y} \end{aligned}$	\widetilde{v}^{m}	$\stackrel{\Sigma^{n}}{N}$		$\underset{\sim}{=}$	$\begin{aligned} & \mathbb{Z}^{n} \\ & 0 \end{aligned}$	ジ
N	T	I	$\frac{I^{3}}{3}$	\mathbb{N}^{∞}	${\underset{V}{\sim}}_{n}^{n}$	${\underset{v}{n}}_{n}^{n}$	${\underset{v}{n}}_{n}^{n}$	${\underset{v}{n}}_{L^{n}}$	$\underset{\sim}{N}$	－
$\begin{aligned} & \text { تِ } \\ & 0.0 \\ & 0.0 \\ & 0 \end{aligned}$	İ	끛	\％	J	\＃	I	3	E	＊	－

| Table II
 (Continued) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table III
${ }^{1} \mathrm{H}$ NMR chemical shifts (δ, ppm) of compounds $X I I-X I V$

Compound	$\mathrm{N}(3)-\mathrm{R}^{1}$	$\mathrm{N}(7)-\mathrm{R}^{2}$	$\mathrm{C}(8)-\mathrm{R}^{3}$	$\mathrm{N}(1)-\mathrm{H}^{\boldsymbol{a}}$
XIIa	$3.55 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$3.90 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$2 \cdot 50 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$8 \cdot 15$
XIIb	$3.55 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$3.90 \mathrm{s,3} \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 1.40 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 2.80 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$8 \cdot 80$
XIIC	$3 \cdot 55 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$3.90 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 1.03 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.80 \mathrm{se}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 2.72 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$9 \cdot 20$
XIId	$3.55 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$3.93 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 0.92 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.40 \mathrm{ov}, 4 \mathrm{H}\left(2 \times \mathrm{CH}_{2}\right) \\ & 1.78 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 2.75 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{3}\right) \end{aligned}$	$9 \cdot 00$
XIIe	$3.55 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 1.40 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 4.30 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$2 \cdot 50 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$9 \cdot 35$
XIIf	$3.58 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 1.45 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 4.30 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & 1.50 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 2 \cdot 80 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$9 \cdot 10$
XIIg	$3 \cdot 55 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 1.45 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 4.30 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & 1.02 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.82 \mathrm{se}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 2.70 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$9 \cdot 40$
XII'	$3 \cdot 55 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 1.45 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 4.30 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & 0.93 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.40 \mathrm{ov}, 4 \mathrm{H}\left(2 \times \mathrm{CH}_{2}\right) \\ & 1.80 \mathrm{qi}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 2.75 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$9 \cdot 20$
XIIi	$3.62 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 1.52 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 4.40 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & 7.58-7.68 \mathrm{~m}, \\ & 5 \mathrm{H} \text { (arom.) } \end{aligned}$	$8 \cdot 92$
XIIj	$3 \cdot 50 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 0.92 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.82 \mathrm{se}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 4.18 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$2.45 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$9 \cdot 58$
XIIk	$3.50 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 0.90 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.78 \mathrm{se}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 4.15 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & 1 \cdot 30 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 2 \cdot 72 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	8.95
XIII	$3.48 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 0.90 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.78 \mathrm{ov}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 4.12 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & 0.98 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.78 \mathrm{ov}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 2.65 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	9.05
XIIn	$3 \cdot 58 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 0.95 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.82 \mathrm{ov}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 4.20 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & 0.92 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.38 \mathrm{ov}, 4 \mathrm{H}\left(2 \times \mathrm{CH}_{2}\right) \\ & 2.73 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 2.80 \mathrm{ov}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$9 \cdot 18$

[^1]Table III
(Continued)

Compound	$N(3)-\mathbf{R}^{1}$	N (7)- R^{2}	$\mathrm{C}(8)-\mathrm{R}^{3}$	$\mathrm{N}(1)-\mathrm{H}^{\boldsymbol{a}}$
XIIn	$3.50 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 0.92 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.35 \mathrm{se}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 1.75 \mathrm{qi}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 4.20 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$2.45 \mathrm{s,3} \mathbf{H}\left(\mathrm{CH}_{3}\right)$	9.62
XIIo	$3.63 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 0.90 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.30 \mathrm{se}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 1.84 \mathrm{qi}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 4.40 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & 7.55-7.65 \mathrm{~m}, \\ & 5 \mathrm{H} \text { (arom) } \end{aligned}$	$8 \cdot 60$
XIIp	$3.53 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 4.90 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 5 \cdot 05 \mathrm{~d}, 1 \mathrm{H}(\mathrm{CH} \text { trans }) \\ & 5 \cdot 25 \mathrm{~d}, 1 \mathrm{H}(\mathrm{CH} \text { cis }) \\ & 5 \cdot 93 \mathrm{o}, 1 \mathrm{H}(\mathrm{CH}) \end{aligned}$	$2.44 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	9.65
XIIr	$3.55 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 5 \cdot 50 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 7 \cdot 15-7.35 \mathrm{~m}, \\ & 5 \mathrm{H} \text { (arom.) } \end{aligned}$	$2.45 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$9 \cdot 20$
XIIIa	$\begin{aligned} & 1 \cdot 35 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 4 \cdot 13 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$3.90 \mathrm{s,3} \mathbf{H}\left(\mathrm{CH}_{3}\right)$	$2.48 \mathrm{s,3} \mathbf{H}\left(\mathrm{CH}_{3}\right)$	8.83
XIIIb	$\begin{aligned} & 1 \cdot 35 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 4 \cdot 18 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$4.00 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 7.50-7.65 \mathrm{~m}, \\ & 5 \mathrm{H} \text { (arom.) } \end{aligned}$	8.80
XIIIC	$\begin{aligned} & 1 \cdot 35 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 4 \cdot 13 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & 4.90 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 5.10 \mathrm{~d}, 1 \mathrm{H}(\mathrm{CH} \text { trans }) \\ & 5.28 \mathrm{~d}, 1 \mathrm{H}(\mathrm{CH} \text { cis }) \\ & 5.98 \mathrm{o}, 1 \mathrm{H}(\mathrm{CH}) \end{aligned}$	$2.45 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$9 \cdot 18$
XIIId	$\begin{aligned} & 1 \cdot 35 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 4 \cdot 18 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & 4.90 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 5.08 \mathrm{~d}, 1 \mathrm{H}(\mathrm{CH} \text { trans }) \\ & 5.26 \mathrm{~d}, 1 \mathrm{H}(\mathrm{CH} \text { cis }) \\ & 6.03 \mathrm{o}, 1 \mathrm{H}(\mathrm{CH}) \end{aligned}$	$\begin{aligned} & 7.45-7.65 \mathrm{~m}, \\ & 5 \mathrm{H} \text { (arom.) } \end{aligned}$	8.78
XIVa	$0.95 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$ $1.80 \mathrm{se}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$ $4.02 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	$3.90 \mathrm{s,3} \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$2.45 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$9 \cdot 20$
XIVb	$0.95 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$ $1.80 \mathrm{se}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$ $4.09 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	$3.92 \mathrm{s,3} \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 1.05 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.80 \mathrm{se}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) \\ & 2.75 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{2}\right) \end{aligned}$	8.92
XIVC	$1.02 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$ $1.88 \mathrm{se}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$ $4.15 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	$4 \cdot 10 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 7.65-7.75 \mathrm{~m}, \\ & 5 \mathrm{H} \text { (arom.). } \end{aligned}$	8.80

Table III
(Continued)

Compound	$\mathrm{N}(3)-\mathrm{R}^{1}$	$\mathrm{N}(7)-\mathrm{R}^{\mathbf{2}}$	C(8)- $\mathrm{R}^{\mathbf{3}}$	$\mathrm{N}(1)-\mathrm{H}^{\boldsymbol{a}}$
XIVd	$0.90 \mathrm{ov}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$0.94 \mathrm{ov}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$2.40 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$9 \cdot 30$
	$1.75 \mathrm{se}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	$1.75 \mathrm{se}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$		
	$3.92 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	$4 \cdot 12 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$		
XIVe	$0.95 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$0.95 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$0.98 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$8 \cdot 65$
	$1.80 \mathrm{ov}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	$1.82 \mathrm{ov}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	$1.80 \mathrm{ov}, 4 \mathrm{H}\left(2 \times \mathrm{CH}_{2}\right)$	
	$4.08 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	$4 \cdot 20 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	$1.82 \mathrm{ov}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	
			$2.75 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	
XIVf	$0.93 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$4.88 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	$2.41 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$	$9 \cdot 36$
	$1.77 \mathrm{se}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	$5.03 \mathrm{~d}, 1 \mathrm{H}(\mathrm{CH}$ trans)		
	$3.99 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$	$5.21 \mathrm{~d}, 1 \mathrm{H}(\mathrm{CH}$ cis)		
		5.92 o, $1 \mathrm{H}(\mathrm{CH})$		

${ }^{a}$ bs, 1 H ; ov overlapped, se sextet.
$(10-15 \mathrm{mg})$ were heated with stirring as follows: XIIe $-60^{\circ} \mathrm{C}, 2 \mathrm{~h} ; X I I f, X I V a-60^{\circ} \mathrm{C}, 3 \mathrm{~h}$; XIIg, XIIj, XIIn, XIIp - $60^{\circ} \mathrm{C}, 4 \mathrm{~h}$; XIII, XIIIc $-60^{\circ} \mathrm{C}, 6 \mathrm{~h}$; XIVb,XIVf $-60^{\circ} \mathrm{C}, 11 \mathrm{~h}$; XIIr $70^{\circ} \mathrm{C}, 5 \mathrm{~h}$; XIII, XIIII - $70^{\circ} \mathrm{C}, 12 \mathrm{~h}$; XIVc, XIIIb, XIIId $-85^{\circ} \mathrm{C}, 10 \mathrm{~h}$. The mixture was cooled to ambient temperature and p-toluenesulfonic acid was neutralized by methanolic ammonia. Volatile portions were removed in vacuo, the residue was dissolved in water ($5-15 \mathrm{ml}$), sodium hydroxide ($1 \mathrm{~mol}^{-1}, 11 \mathrm{ml}$) and charcoal were added, and carbon dioxide was introduced to the filtered solution till be product ceased to separate. After standing at $0^{\circ} \mathrm{C}$ for $2-3 \mathrm{~h}$, the product was filtered off, dried at $100^{\circ} \mathrm{C}$ under reduced pressure and crystallized from ethanol.

The authors are indebted to Mr. V. Hladký, Miss A. Gembická and Mr. K. Paule for their assistance with preparation of intermediates, measuring the mass spectra and for elemental analyses, respectively.

REFERENCES

1. Golovchinskaya E. S.: Zh. Prikl. Khim. (Leningrad): 30, 1374 (1957); Chem. Abstr. 52, 5425 (1958).
2. Kostolanský A., Mokrý J., Tamchyna J.: Chem. Zvesti 10, 96 (1956); Chem. Abstr. 50. 13947 (1956).
3. Bedereck H., Siegel E., Föhlish B.: Chem. Ber. 95, 407 (1962).
4. Wojciechowski J.: Acta Pol. Pharm. 18, 409 (1961); Chem. Abstr. 57, 11193 (1962).
5. Barker G. R., Luthy N. G.: J. Chem. Soc. 1956, 920.
6. Schroeder E. F.: U.S. 2731465 (1956); Chem. Abstr. 51, 1257 (1957).

Translated by Z. Votický.

[^0]: 6-Amino-5-bromo-1-alkyl-2,4(1H,3H)-pyrimidinediones $I V-V I$
 A) To a stirred and to $15-17^{\circ} \mathrm{C}$ cooled mixture consisting of compound $I-I I I(0.20 \mathrm{~mol})$, sodium hydrogencarbonate $(17.64 \mathrm{~g}, 0.21 \mathrm{~mol})$ and methanol (200 ml) bromine ($33.60 \mathrm{~g}, 10.8 \mathrm{ml}$, 0.21 mol) was added to the bottom of the flask during 30 min . The reaction was finished after further 30 min and the product was filtered off and crystallized from water.
 B) To a stirred solution obtained by a short heating of compound $I(28.20 \mathrm{~g}, 0.20 \mathrm{~mol})$ and sodium acetate trihydrate $(29.90 \mathrm{~g}, 0.22 \mathrm{~mol})$ in acetic acid (1500 ml) bromine $(35.16 \mathrm{~g}, 11.3 \mathrm{ml}$, 0.22 mol) was added to the bottom of the flask at about $90^{\circ} \mathrm{C}$. Stirring had been continued for

[^1]: Collect. Czech. Chem. Commun. (Vol. 55) (1990)

